ARC FAR SIDE IMPACT COLLABORATIVE RESEARCH PROGRAM:
TASK 1 – INJURY & HARM ANALYSIS

by
Hampton C. Gabler
Virginia Tech

Michael Fitzharris
James Scully
Brian N. Fildes
Monash University Accident Research Centre

Kennerly Digges
George Washington University

Laurie Sparke
Holden Innovation

February 2008

Report No.
Title and sub-title:
ARC Far Side Impact Collaborative Research Program: Task 1 – Injury & Harm Analysis

Author(s):
Hampton C. Gabler (Virginia Tech), Michael Fitzharris, James Scully, Brian N. Fildes (Monash University Accident Research Centre), Kennerly Digges (George Washington University), Laurie Sparke (Holden Innovation)

Sponsoring Organisation(s):
Australian Research Council (Linkage Grant), George Washington University, Virginia, USA, GM_Holden, Australia, and Autoliv Research, Sweden.

Abstract:
This report evaluates the risk of side crash injury for far side occupants in Australia and the United States. The study was based on the analysis of Australian data drawn from the Monash University Accident Research Center (MUARC) In-depth Data System (MIDS) and U.S. data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS). Over 100 cases of Australian far side struck occupants were examined from the MIDS database, and over 4500 cases of U.S. far side struck occupants were investigated from NASS/CDS 1993 - 2002. For both data sets, the analysis was restricted to three-point belted occupants of cars, light trucks, and vans. The report evaluates the risk of far side impact injury as a function of struck body type, collision partner, delta-V, crash direction (PDOF), occupant compartment intrusion, and injury contact source. Injury risk is evaluated using the maximum injury severity for each occupant, by injury severity for each body region, and by Harm, a social cost measure. The goal of this study was to develop priorities for developing far side impact injury countermeasures which would be effective in both countries.

Key Words:

Disclaimer
This report is disseminated in the interest of information exchange. The views expressed here are those of the authors, and not necessarily those of the project sponsors or other members of the research team.

Distribution:
Report available from the Monash University Accident Research Centre, Wellington Road, Clayton, Victoria, 3800, Australia. Telephone: +61 3 9905 4371, Fax: +61 3 9905 4363

Reproduction of this page is authorised
TABLE OF CONTENTS

Introduction ... 1

Objective ... 1

Approach .. 1

 - Data Sources ... 1
 - Far Side Impact Data Set ... 2
 - Measuring Social Cost with Harm ... 3

Results ... 5

 - Comparison of Australian and U.S. Far Side Crashes ... 5
 - Impact Configuration ... 14
 - Injury Sources ... 19

Conclusions .. 21

References ... 23
TABLE OF FIGURES

Figure 1. Distribution of Australian Near vs. Far Side Impact Injuries for 3-Point Belt Restrained Occupants
Figure 2. Comparison of U.S. Near and Far Side Impact Injuries for 3-Point Belt Restrained Occupants
Figure 3. Distribution of Far Side Impact Harm by Body Region – Australia vs. U.S.
Figure 4. Distribution of Injuries by Body Region – U.S.
Figure 5. Australian Far Side Injuries to Belted Occupants by Seating Position
Figure 6. U.S. Far Side Injuries to Belted Occupants by Seating Position
Figure 7. U.S. Far Side Impact Injuries by Body Type of Struck Vehicle
Figure 8. Distribution of Serious Injuries by Type of Struck Vehicle Type and Body Region Injured in the U.S.
Figure 9. Distribution of Serious Injuries by Type of Struck Vehicle Type and Body Region Injured
Figure 10. Distribution of Injuries by Striking Vehicle Type in the U.S.
Figure 11. Distribution of Injuries by Striking Vehicle Type and Injured Body Region
Figure 12. Distribution of Injuries by Number of Events
Figure 13. Distribution of Far Side Impact Injuries by Total Delta-V
Figure 14. Distribution of Far Side Impact Injuries by Lateral Delta-V
Figure 15. Side Crash Damage Extent
Figure 16. Distribution of Injuries by Damage Extent
Figure 17. Distribution of Far Side Impact Injuries by Principal Direction of Force
Figure 18. Side Crash Impact Locations
Figure 19. Distribution of Far Side Impact Injuries by Location of Impact
Figure 20. Distribution of Head Injuries by Injury Source
Figure 21. Distribution of Chest Injuries by Injury Source
Figure 22. Distribution of Serious Chest Injuries (AIS 3+) by PDOF
Figure 23. Distribution of Abdominal Injuries by Injury Source
Figure 24. Distribution of Serious Abdominal Injuries (AIS 3+) by PDOF

TABLE OF TABLES

Table 1. Number of Australian Belted Far Side Struck Occupants – MIDS
Table 2. Number of U.S. Belted Far Side Struck Occupants – NASS/CDS 1993-2002
Table 3. Average Cost per Injury (Normalized to the Cost of a Fatal Injury)
Table 4. Distribution of Serious Injuries by Striking Vehicle Type in Australia
ACKNOWLEDGEMENTS

Far Side Research Team Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian Fildes</td>
<td>MUARC, Australia</td>
<td>Chief Investigator</td>
</tr>
<tr>
<td>Kennerly Digges</td>
<td>George Washington University</td>
<td>Chief Investigator</td>
</tr>
<tr>
<td>Laurie Sparke</td>
<td>GM_Holden, Australia</td>
<td>Sponsor & Investigator</td>
</tr>
<tr>
<td>Stu Smith</td>
<td>GM_Holden, Australia</td>
<td>Sponsor & Investigator</td>
</tr>
<tr>
<td>Ola Bostrom</td>
<td>Autoliv Research</td>
<td>Sponsor & Investigator</td>
</tr>
<tr>
<td>Richard Morgan</td>
<td>George Washington University</td>
<td>Sponsor & Investigator</td>
</tr>
<tr>
<td>Frank Pintar</td>
<td>Medical College Wisconsin</td>
<td>Investigator</td>
</tr>
<tr>
<td>Narayan Yoganandan</td>
<td>Medical College Wisconsin</td>
<td>Investigator</td>
</tr>
<tr>
<td>Hampton Clay Gabler</td>
<td>Virginia Tech (Mech Eng)</td>
<td>Investigator</td>
</tr>
<tr>
<td>Stefan Duma</td>
<td>Virginia Tech (CIB)</td>
<td>Investigator</td>
</tr>
<tr>
<td>Joel Stitzel</td>
<td>Virginia Tech (CIB)</td>
<td>Investigator</td>
</tr>
<tr>
<td>Jeff Augenstein</td>
<td>William Lehman Center</td>
<td>Investigator</td>
</tr>
<tr>
<td>Tom Gibson</td>
<td>Human Impact Engineering</td>
<td>Investigator</td>
</tr>
<tr>
<td>Clay Douglas</td>
<td>MUARC, Australia</td>
<td>Graduate Student</td>
</tr>
<tr>
<td>Stephen Rouhana</td>
<td>Ford (US)</td>
<td>Observer</td>
</tr>
<tr>
<td>King Yang</td>
<td>Wayne State University</td>
<td>Observer</td>
</tr>
<tr>
<td>Craig Newland</td>
<td>DOTARS, Australia</td>
<td>Observer</td>
</tr>
</tbody>
</table>

We gratefully acknowledge the sponsors of this research program.

- The Australian Research Council awarded Grant No. LP0454122 to Professor Brian Fildes at the Monash University Accident Research Centre.

- Dr. Kennerly Digges and the FHWA/NHTSA National Crash Analysis Center at the George Washington University has been selected to be an independent solicitor of and funder for research in motor vehicle safety, and to be one of the peer reviewers for the research projects and reports.

- Industry partners also contributed to research program, namely GM Holden Australia and Autoliv Research, Sweden.
EXECUTIVE SUMMARY

The primary objective of both side impact research and side impact regulation to date has been to protect occupants located on the struck side of a passenger vehicle. However, occupants of the non-struck, or far side, of the vehicle are also at risk of injury (Digges and Dalmotas, 2001). The mechanism of far side impact injury is believed to be quite different than that for near side impact injury. Far side impact protection may require the development of different countermeasures than those which are effective for near side impact protection.

This report evaluates the risk of side crash injury for far side occupants in Australia and the United States. The study was based on the analysis of Australian data drawn from the Monash University Accident Research Center (MUARC) In-depth Data System (MIDS) and U.S. data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS). Over 100 cases of Australian far side struck occupants were examined from the MIDS database, and over 4500 cases of U.S. far side struck occupants were investigated from NASS/CDS 1993 - 2002. For both data sets, the analysis was restricted to three-point belted occupants of cars, light trucks, and vans.

Specific conclusions are as follows:

• Far side struck occupants have a significant risk of injury in both Australia and the United States. As a fraction of all occupants who experienced a side impact, far side struck occupants accounted for approximately 20% of the seriously injured persons and 25-29% of the Harm.

• Protection of the head, chest, and spine are priorities for countermeasure development in both Australia and the United States. These three body regions accounted for approximately half of all the Harm attributed to far side impact.

• Injuries to the upper and lower extremities combined for approximately 40% of the far side impact Harm in both countries – a surprisingly large fraction.

• Nearly half of all AIS 2+ injuries to the chest were the result of contact with the seat back. Analysis of high speed video of side impact crashes reveals that in a side impact the near side seat is frequently deformed out of position and into the trajectory of a far side occupant.

• The accident data suggest that improvement of safety belt loading should be a priority for both abdominal and chest injury reduction. Injuries induced by the safety belt or buckle accounted for approximately one-fourth of AIS 2+ chest injuries. Particularly surprising was the finding that 86% of the AIS 2+ abdominal injuries were the result of contact with either the safety belt or buckle. Future studies will investigate whether some of these abdominal injuries may be the result of undetected contact with the center console.
To assist in the development of a far side impact test procedure, the analysis used U.S. data to investigate the impact conditions which lead to far side impact injury. Specific findings are as follows:

- The median lateral delta-V for occupants exposed to far side impact was 12 km/hr. The median lateral delta-V for Harm was 22 km/hr while the median lateral delta-V for serious injuries was 28 km/hr.

- A principal direction of force of 60° was most likely to be associated with serious injury. A PDOF of 60° +/- 15° was experienced by 60% of the seriously injured persons and resulted in 45% of the Harm.

- A vehicle or fixed object striking the occupant compartment of a subject vehicle was most likely to produce far side injuries. Impacts involving the occupant compartment accounted for 86% of the seriously injured persons and 86% of the Harm.
Introduction

The primary objective of both side impact research and side impact regulation to date has been to protect occupants located on the struck side of a passenger vehicle. However, occupants of the non-struck, or far side, of the vehicle are also at risk of injury (Digges and Dalmotas, 2001). The mechanism of far side impact injury is believed to be quite different than that for near side impact injury. Far side impact protection may require the development of different countermeasures than those which are effective for near side impact protection.

In early 2004, an international consortium of universities and crashworthiness research groups, led by the Monash University Accident Research Centre (MUARC), began to examine the problem of far side impact injury risk (Fildes et al, 2005). The goal of this research program is to investigate far side impact injury to occupants of passenger cars, light trucks and vans. The specific objectives of the project are to establish an improved understanding of the biomechanics of far side impact injury, develop a test procedure for evaluating the potential of injury in a far side impact, and explore new countermeasure approaches for far side impact injury prevention.

Objective

The goal of this task was to determine the risk of injury from far side impact crashes in Australia and the United States. The specific objectives were to determine the priorities for injury countermeasure development, and to characterize those impact conditions which lead to far side impact injury to assist in the development of a far side impact test procedure.

Approach

The analysis presented in this report was based on the examination of Australian data drawn from the MUARC In-depth Data System (MIDS) and U.S. data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) files from 1993 - 2002.

Data Sources

The MUARC In-depth Data System (MIDS) is comprised of in-depth accident investigation data from four crashed vehicle studies conducted by the MUARC: the Crashed Vehicle File (CVF) collected from 1989 – 1993; the study funded by FORS (now the Australian Transport Safety Bureau, ATSB) to evaluate ADR69 and conducted from 1995 – 2000, the Holden Crash Investigation project (1993 onwards) and the current Australian National Crash In-Depth Study (ANCIS) from 2000 onwards.
The MIDS database contains weights which, when applied to individual cases, permitted national estimates of traffic crash injury in Australia. The MIDS weighting system uses key crash parameters that when used in combination result in 4032 possible covariate patterns, in order to adequately capture crash and injury characteristics. Principal variables for the weighting system are: Year of vehicle manufacture (pre/post-1990); Impact direction (e.g., front, left, or right side of vehicle); Seating position of occupant; Single vehicle crash or multiple vehicle crash; Speed zone (categories: ≤60, 70-90, 100+ km/h); Head injury AIS ≥ 3; Chest or Abdominal injury AIS ≥ 3; Lower extremity AIS ≥ 3. The year of manufacture is included as advances in vehicle safety have progressed rapidly, and, while crude, serves as a reasonable cut-point as the Australian fleet is on average 10 -12 years of age. The expected number of crashes in each of the 4032 covariate patterns was calculated for all fatality crashes in Australia and Victorian crash statistics for a three year period (1999-2001) with Victorian crashes adjusted and multiplied to approximate and equal, respectively, the Australian serious, minor and non-injury crashes. Weights were determined by expressing expected number of occupants per covariate pattern divided by the number of matching occupants in the MIDS. Analysis was conducted with and without weights applied.

NASS/CDS is a sample of 4,000 to 5,000 crashes investigated each year by the U.S. National Highway Traffic Safety Administration (NHTSA) at up to 27 locations throughout the United States. For a crash to be included in NASS/CDS, at least one of the vehicles in the accident had to be towed from the scene. Each case in NASS/CDS has corresponding weights which allow for computation of national estimates of traffic crash injury outcome.

Far Side Impact Data Set

The analysis which follows focuses exclusively on occupants of passenger vehicles subjected to far side impact. The analysis was limited to passenger cars, light trucks, and vans subjected to a side impact. For this study, side impact was defined to be a crash in which the general area of damage in the most harmful event was to the left or right side of the car. Any cases in which the vehicle rolled over were excluded.

A far side occupant was defined to be either an outboard occupant on the opposite side of a crash or a center seated occupant. For impacts to the driver side of the car, for example, a front seat passenger would be considered to be on the far side of the car. Likewise, for impacts to the front passenger side of the car, the driver would be considered to be the far side occupant. Only occupants that were restrained by a three-point safety belt were included in the study.

As shown in Table 1 and Table 2, these selection criteria resulted in a final sample of 107 Australian cases and 4,518 U.S. cases of far side struck occupants. 10 of the Australian cases and 281 of the U.S. cases were seriously injured occupants. Seriously injured occupants were defined to be occupants with a maximum injury severity of AIS 3 or greater. Both files contained a small number of fatally-injured occupants which were
included in the Harm calculation but not analyzed separately. In addition to the unweighted number of cases, these tables also present weighted counts of the number of occupants in each injury severity category. The weighted numbers were developed using the multipliers included in both MIDS and NASS to permit national estimates of injury in their corresponding countries. All analyses which follow were performed with weighed accident data.

Table 1. Number of Australian Belted Far Side Struck Occupants – MIDS

<table>
<thead>
<tr>
<th></th>
<th>Weighted</th>
<th>Unweighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>5,894</td>
<td>107</td>
</tr>
<tr>
<td>Seriously Injured Occupants (AIS3+)</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td>Fatalities</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Number of U.S. Belted Far Side Struck Occupants – NASS/CDS 1993-2002

<table>
<thead>
<tr>
<th></th>
<th>Weighted</th>
<th>Unweighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>2,386,633</td>
<td>4,518</td>
</tr>
<tr>
<td>Seriously Injured Occupants (AIS3+)</td>
<td>21,982</td>
<td>281</td>
</tr>
<tr>
<td>Fatalities</td>
<td>5,175</td>
<td>80</td>
</tr>
</tbody>
</table>

One analytical challenge of this study was how to combine the Australian and U.S. data. The U.S. far side impact data set is many times larger than the corresponding Australian data set. Our approach was to use the Australian and U.S. data to compare and contrast the higher level characteristics of the far side impact problem, e.g. body region priorities for injury reduction. The larger U.S. data set was then used to determine the detailed injury mechanisms of far side impact injury. At the time of this report, the number of cases from the MIDS database was too small to perform a similar analysis with Australian data alone.

Measuring Social Cost with Harm

Our study used the Harm metric to measure the social cost of traffic accidents. The Harm metric was first developed by Malliaris et al (1982) as a means of balancing number of injuries with the severity or cost of an injury. Severity is measured using the Abbreviated Injury Scale (AIS) which describes the relative threat to life of an injury (AAAM, 1990). AIS levels range from 0 for no injury to 6 for unsurvivable, or fatal, injuries. Using the
Malliaris Harm metric, each AIS level has a prescribed social cost. This social cost includes both medical costs and indirect costs such as loss of wages. For each injured person, the Harm is the social cost which corresponds to their maximum AIS injury level.

This original Harm metric was a remarkable new method of injury assessment, but had two weaknesses. First, social cost is not a function exclusively of AIS level. The social cost of injury varies by body region as well as by injury severity. For example, an AIS 3 head injury has a higher social cost than an AIS 3 leg injury. Second, the original Harm metric assigned a cost to only the injury of highest severity. This approach can underestimate the total social cost of a person who suffers multiple injuries as multiple injuries can aggravate the total threat to a crash victim’s life.

Fildes et al (1994) developed an improved Harm metric which addressed these two issues. The improved method assigns a social cost to each injury, and sums these costs to estimate a total social cost of injury.

\[
Harm = \sum_{i=1}^{\text{NumInjuries}} Cost_i(bodyregion, AIS)
\]

This method assigns a social cost to each injury, and sums these costs to estimate a total social cost of injury. In this study, Cost\(_i\), the social cost of an injury \(i\) as defined by Fildes et al (1994) was used as a measure of social cost. Cost\(_i\) is a function of the injury severity as measured by the AIS scale, and the body region which has been injured. The cost components include not only treatment and rehabilitation costs but also all other costs to society such as loss or wages and productivity, medical and emergency service infrastructure costs, legal and insurance costs, legal and insurance charges, family and associated losses and allowances for pain and suffering.

This study uses a variation of the Fildes method for computation of Harm. In some cases, there may be multiple injuries to a single body region. In our methodology, the maximum injury to a single body region is used when assigning costs as costs are typically assigned to treat a single body region not individual injuries of that body region. For purposes of this comparison, this study will also present the number of seriously injured persons (AIS 3 or greater) and the Malliaris Harm Metric. The costs used for the Fildes Harm metric were normalized to cost of a fatality and are presented in Table 3.

As another measure of injury outcome, our analysis also computed the number of serious injuries. Serious injuries are defined to be injuries of AIS level 3 or greater. Like the Harm metric, the use of serious injuries as a metric avoids the biases associated with the use of fatality or total injury counts. Both Harm and number of serious injuries are frequently set as targets for reduction through countermeasure development.
Table 3. Average Cost per Injury (Normalized to the Cost of a Fatal Injury)

<table>
<thead>
<tr>
<th>BODY REGION</th>
<th>Minor (AIS = 1)</th>
<th>Moderate (AIS = 2)</th>
<th>Serious (AIS = 3)</th>
<th>Severe (AIS = 4)</th>
<th>Critical (AIS = 5)</th>
<th>Maximum (AIS = 6)</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>0.0045</td>
<td>0.0250</td>
<td>0.0698</td>
<td>0.1135</td>
<td>0.1646</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Head</td>
<td>0.0063</td>
<td>0.0295</td>
<td>0.1213</td>
<td>0.2796</td>
<td>0.9877</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Face</td>
<td>0.0063</td>
<td>0.0295</td>
<td>0.1213</td>
<td>0.1601</td>
<td>0.3277</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Neck</td>
<td>0.0063</td>
<td>0.0295</td>
<td>0.1213</td>
<td>0.1601</td>
<td>0.3277</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Chest</td>
<td>0.0045</td>
<td>0.0250</td>
<td>0.0698</td>
<td>0.1135</td>
<td>0.1646</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.0045</td>
<td>0.0250</td>
<td>0.0698</td>
<td>0.1135</td>
<td>0.1646</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Pelvis</td>
<td>0.0045</td>
<td>0.0250</td>
<td>0.0698</td>
<td>0.1135</td>
<td>0.1646</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Spine</td>
<td>0.0045</td>
<td>0.0250</td>
<td>0.1631</td>
<td>1.4054</td>
<td>1.6804</td>
<td>1.0000</td>
<td>0.0045</td>
</tr>
<tr>
<td>Upper Extremity</td>
<td>0.0063</td>
<td>0.0433</td>
<td>0.1026</td>
<td></td>
<td></td>
<td></td>
<td>0.0045</td>
</tr>
<tr>
<td>Lower Extremity</td>
<td>0.0045</td>
<td>0.0433</td>
<td>0.1303</td>
<td>0.1926</td>
<td>0.3277</td>
<td></td>
<td>0.0045</td>
</tr>
</tbody>
</table>

Results

Comparison of Australian and U.S. Far Side Crashes

The traffic safety environments in Australia and the United States share many common vehicle types and similar safety regulations, but also differ in several important aspects. Differences in fleet composition, driver seating position, and rural-to-urban driving mix may have an influence on the priorities for countermeasure development. Our initial step in the analysis was to compare and contrast the risk of far side impact injury in Australia and the United States.

Figure 1 and Figure 2 present the relative injury risk of near and far side impact for Australia and the U.S. As illustrated in Figure 2, a side struck occupant in the U.S. has a nearly equal probability of being seated on the near or far side of the vehicle. Approximately half of the side struck occupants were on the near side, and half were on the far side. In Australia, however, the MIDS database predicts a very different distribution. 60% of side struck occupants were on the near side of the car and the remaining fraction were on the far side of the car.

On the other hand, the ratio of near side to far side occupant injuries was very similar in both countries. Both the Australian and the U.S. accident data show that near side impact carries a significantly higher injury risk. Near side crashes accounted for approximately 80% of the seriously injured side struck persons in Australia and 78% in the U.S. Near
side struck occupants incurred 76% of the side impact Harm in Australia, and 71% of the side impact Harm in the U.S.

Far side struck occupants have a significant risk of injury in both Australia and the United States. As a fraction of all occupants who experienced a side impact, far side struck occupants accounted for approximately 20% of the seriously injured persons and 24-29% of the Harm.

![Figure 1. Distribution of Australian Near vs. Far Side Impact Injuries for 3-Point Belt Restrained Occupants](image1)

![Figure 2. Comparison of U.S. Near and Far Side Impact Injuries for 3-Point Belt Restrained Occupants](image2)
As seen in Figure 3, the distribution of far side impact injury by body region is very similar in both Australia and the U.S. Head injuries accounted for approximately one-fourth of all Harm, the largest fraction of total Harm. The largest differences in injury outcome were for the chest and the spine. The chest incurred 13% of all Harm in the U.S. and only 7% of all Harm in Australia. Spine injuries accounted for 15% of all Harm in Australia, but only 10% of Harm in the U.S. Protection of the head, chest, and spine are priorities for countermeasure development. These three body regions accounted for approximately half of all the Harm attributed to far side impact in both countries.

Injuries to the upper and lower extremities combined for approximately 40% of the far side impact Harm in both countries – a surprisingly large fraction. These injuries may be due to the flailing motion of the limbs as the occupant is thrown across the car in a far side impact. One difference between NASS and MIDS should be noted here: in the MIDS database pelvic injuries were grouped with the abdominal injuries while in NASS/CDS pelvic injuries were grouped with lower extremity injuries.

![Figure 3. Distribution of Far Side Impact Harm by Body Region – Australia vs. U.S.](image)

Figure 4 compares the distribution of U.S. far side serious impact injuries and Harm by body region. A similar analysis using Australian data was not possible because of the smaller Australian serious injury data set. In the U.S. The chest was the body region most likely to suffer a serious injury and incurred approximately one-third of all serious injuries (33%). Head injuries were the second most likely region to suffer a serious injury and accounted for over a quarter of all serious injuries (27%). Head injuries accounted for one-fourth of all Harm, the largest fraction of total Harm. Surprisingly, the upper and lower extremities accounted for a combined one-third of the Harm and one-fourth of the serious injuries.
In both Australia and the U.S. the distribution of Harm by seating location was very similar. As shown in Figure 5 and Figure 6, in both Australia and the U.S. drivers composed just under three-fourths of the far side struck occupants and incurred just over three-fourths of the Harm. Front passengers accounted for approximately 20% of the far side struck occupants, and 14-20% of the Harm. Rear passengers comprised only 7% of the total far side struck occupants and only 3-6% of the Harm. A test procedure which focuses on the front seat occupants would capture over 90% of the Harm.
The composition of the Australian and U.S. passenger vehicle fleets are very different. The Australian fleet is primarily composed of passenger cars. The U.S. fleet is characterized by a growing segment of light trucks and vans (LTVs) now estimated to account for 40% of registered light vehicles and 50% of all light vehicle sales in the U.S. The LTV category includes pickup trucks, sport utility vehicles, vans, and minivans.

Reflecting this fleet composition, the Australian dataset contained only passenger car data. The U.S. dataset however contained cases of both car and LTV occupants involved in far side impact. Figure 7 presents the distribution of injuries by struck body type in the U.S. Approximately three-fourths (76%) of the side struck occupants in the U.S. were drivers or passengers of a car. The remaining persons were occupants of an LTV. A far side impact is much more dangerous for a car occupant than for the occupant of a light truck or van (LTV). Although car occupants accounted for 76% of side struck persons in the U.S., car occupants accounted for 83% of the seriously injured persons and 84% of the Harm.
Finding that a substantial proportion of the far side harm in the U.S. is incurred by LTV occupants, we next examined whether car and LTV occupants might require different injury countermeasures. As seen in Figure 8, the Harm distributions for car and LTV occupants are not identical. Nevertheless, the head, chest, and spine are urgent targets for Harm reduction. For both car and LTV occupants, the largest contributor to Harm was head injuries. Chest injuries resulted in much more Harm for car occupants (14%) than for LTV occupants (10%). In contrast, upper and lower extremity injuries were somewhat more important for LTV occupants than for car occupants. Injuries to the arms and legs accounted for 44% of LTV occupant Harm, but only 36% of car occupant Harm.
As seen in Figure 9, the serious injuries suffered by car occupants were most likely to be chest (35%) and head (29%) injuries. Upper and lower extremity injuries each accounted for only 11% of serious injuries. In contrast, serious injuries to LTV occupants were almost uniformly distributed among head, chest, upper extremity, and lower extremity injuries. This suggests that passenger car occupants may require a different set of countermeasures than LTV occupants.

![Figure 9. Distribution of Serious Injuries by Type of Struck Vehicle Type and Body Region Injured](image)

Table 4. Distribution of Serious Injuries by Striking Vehicle Type in Australia

<table>
<thead>
<tr>
<th>Striking Vehicle or Object</th>
<th>Weighted Occupants</th>
<th>Weighted AIS3+ Occupants</th>
<th>Unweighted Occupants</th>
<th>Unweighted AIS3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car / UTE</td>
<td>3,892</td>
<td>28</td>
<td>63</td>
<td>5</td>
</tr>
<tr>
<td>4WD</td>
<td>264</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>91</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Heavy Truck / Bus</td>
<td>169</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Other Vehicle</td>
<td>1,063</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>139</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Tree</td>
<td>251</td>
<td>9</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Other Object</td>
<td>26</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,894</td>
<td>39</td>
<td>107</td>
<td>10</td>
</tr>
</tbody>
</table>

The distribution of Australian and U.S. far side injuries by striking vehicle were next evaluated to determine the influence of differing fleet composition. As shown in
Table 4, however there were too few cases in the Australian data to disaggregate the data to this level. This table does however show that the primary striking vehicle was a passenger car or a passenger car-derivative denoted as Ute in the table.

Figure 10 depicts the distribution of far side injuries as a function of the striking vehicle type. Several studies have showed that light trucks and vans are incompatible with cars in traffic collisions [Summers et al, 2001; Gabler and Hollowell, 1998; IIHS, 1998]. The incompatibility is particularly an issue when the striking vehicle is an LTV and the struck vehicle is a passenger car. This observation is confirmed in Figure 10. The striking vehicle for over half of the side struck occupants was a passenger car, yet this collision partner accounted for only 31% of the Harm and 37% of the fatalities. In contrast, 27% of the occupants were struck by an LTV, but these collisions resulted in 35% of the Harm and fatalities. Particularly dangerous, but fortunately rare, were collisions with ‘Other’ vehicles – a category which includes heavy trucks, buses, and motorcycles. Collisions with fixed objects, e.g. trees and poles, accounted for 16% of the side struck occupants, 19% of the fatalities and 18% of the Harm.

As shown in Figure 11, the injury patterns differ by collision partner. Occupants struck by LTVs were more likely to suffer head and chest injuries than were occupants struck by passenger cars. The fraction of head and chest Harm for occupants struck by LTVs was 41% whereas head and chest harm was 33% of all harm for all occupants struck by cars. For occupants involved in a far side impact with a fixed object, 45% of the Harm is accounted for by head and face injuries. These differences may be due to the greater intrusion associated with LTV and fixed object collisions or simply to differences in impacting geometry between these three categories of collision partners.
A traffic accident does not always involve just a single collision. A crash may be composed of multiple collisions with several different vehicles or objects. This study considers the outcome of a crash to be the result of the event judged by NASS investigators to be the most harmful event. Figure 12 presents the distribution of injury by the number of events in which the side struck vehicle was involved. Over 60% of the sides struck occupants were involved in only a single event collision. Single event collisions accounted for over half of the seriously injured occupants and Harm. As the remaining 40% of the side struck occupants incurred approximately one half of the serious injuries, multiple event collisions, as might be expected, carry a higher risk of serious injury than do single event collisions.
Impact Configuration

Impact speed, impact angle, and impact location are important parameters which must be identified in order to design a test procedure to evaluate far side impact injuries. This section provides an analysis of the accident data which investigates the impact configuration of a far side crash. Because of the small number of Australian cases, the analysis which follows is based exclusively upon U.S. accident data.

Figure 13 presents the distribution of far side injuries by total delta-V of the struck vehicle. Total delta-V is the resultant change in velocity, and includes both the lateral and longitudinal components of delta-V. The median total delta-V for all far side struck occupants was 15 km/hr. Half of the Harm occurred for total delta-V less than or equal to 24 km/hr. The median total delta-V for occupants with a maximum AIS injury level of 3 or higher was 32 km/hr.
Figure 13. Distribution of Far Side Impact Injuries by Total Delta-V

Figure 14 examines the distribution of far side injuries by lateral delta-V of the struck vehicle. The median lateral delta-V for all far side struck occupants was 12 km/hr. Half of the Harm occurred for total delta-V less than or equal to 22 km/hr. The median lateral delta-V for occupants with a maximum AIS injury level of 3 or higher was 28 km/hr.

Figure 14. Distribution of Far Side Impact Injuries by Lateral Delta-V

For near side struck occupants, intrusion into the occupant compartment is known to increase the severity of impact injury. The effect of intrusion is not as obvious, however, for far side struck occupants. Our analysis used the SAE collision deformation extent,
recorded by NASS crash investigators, as a measure of intrusion. As shown in Figure 15 the SAE collision deformation classification scheme divides the struck side of the car into nine zones. The boundary between the fifth and sixth zone corresponds to the centerline of the car.

As shown in Figure 16, 60% of all far side struck occupants were exposed to crashes with a damage extent involving only the first and second zones. This figure shows that serious injuries are strongly correlated with damage extent. Almost no serious injuries were observed for damage extent limited to the first two zones. However, 60% of the serious injuries were incurred by occupants of a vehicle with a damage extent to zones 3 or 4. However, as damage extent is also correlated with delta-V, it is unclear from this figure if the injury was a result of intrusion or simply a higher inertial loading.

![Figure 15. Side Crash Damage Extent](image)

![Figure 16. Distribution of Injuries by Damage Extent](image)

Figure 17 presents the distribution of injuries by principal direction of force (PDOF). Zero degrees is the front of the struck car, 180 degrees is the rear of the struck car and 90 degrees is normal to the side of the struck car. In NASS, PDOF normally ranges from 0 to 360 degrees. For a side impact, a PDOF ranging from 0 to 180 degrees would
correspond to a right side impact, while a PDOF ranging from 180 to 360 degrees would correspond to a left side impact. Note that for this analysis, the PDOF for both left and right side impacts have been collapsed into a set of values ranging from 0 to 180 degrees. Hence, a direction of force perpendicular to the side of either the left or right side of the vehicle would correspond to an angle of 90 degrees.

![Figure 17. Distribution of Far Side Impact Injuries by Principal Direction of Force](image)

As shown in Figure 17, the most likely principal direction of force in far side impacts was 60 degrees. A principal direction of force of 60 degrees, +/- 15 degrees, accounted for 60% of the seriously injured occupants, and 45% of the Harm. Little injury was observed either for PDOF below 30 degrees or for PDOF which exceeded 90 degrees.

Figure 18 shows the definition of impact region used in this analysis. The NASS categories Y (front 2/3 of the car side), P (center 1/3 of the car side), Z (rear 2/3 of the car side), and D (distributed), all involve impact to the occupant compartment. An impact to the occupant compartment may result in intrusion which is known to increase the injury severity for near side struck occupants. Intrusion may also affect the injury outcome for a far side struck occupant.
Figure 18. Side Crash Impact Locations

Figure 19 shows that the front 2/3 of the vehicle was the most likely damage location for the vehicles in our sample. Impacts to this region also accounted for the largest fractions of seriously injured occupants (42%) and Harm (39%). Collisions which involved the occupant compartment were observed to result in a disproportionate amount of serious injuries and Harm. The side damage locations P, Y, Z, and D in the figure above accounted for 66% of the side struck occupants, but 86% of both the seriously injured occupants and the Harm.

Figure 19. Distribution of Far Side Impact Injuries by Location of Impact
Injury Sources

The following charts present the distribution of far side injuries by injury source. These figures identify potential targets for the development of countermeasures to prevent or reduce the severity of far side injuries. Because the number of AIS3+ cases in each category can be very small when disaggregating the data in this way, these figures report injuries at the AIS 2 level and higher. Harm was computed using only injuries of severity AIS 2 and greater.

As shown in Figure 20, the leading sources of head injury were contact with the right interior, roof, center panel, and right roof rail. Twenty per cent of the head Harm results from contact with the right interior surfaces of the vehicle. Because the head is free to flail about in the vehicle, we also note that unlike other, more constrained body regions, the head suffers impact with a large number of different contact sources.

![Figure 20. Distribution of Head Injuries by Injury Source](image)

As shown in Figure 21, the leading sources of chest injury were contact with the seat back, the belt webbing or buckle, the right interior, and other occupants. Almost half of the AIS 2+ injuries result from contact with the seat back of the vehicle. Analysis of high speed video of side impact crashes reveals that in a side impact the near side seat is frequently deformed out of position and into the trajectory of a far side occupant. Injuries induced by the safety belt or buckle accounted for approximately one-fourth of AIS 2+ injuries. As shown in Figure 22, most of the serious chest injuries occurred as a result of impacts with a PDOF of 60 degrees.
As shown in Figure 23, 86% of the AIS 2+ injuries and 73% of the Harm were the result of abdominal contact with either the safety belt or buckle. As shown in Figure 24, most of the serious abdominal injuries occurred at a PDOF of 90 degrees. These data suggest that current safety belt designs appear to interact very poorly with the abdomen of far side struck occupants. Analysis of high speed video of side impact crashes suggests that some of these abdominal injuries could also be the result of contact with the center console. Because the center console is so much stiffer than the abdomen, it is possible that impacts with the center console are not always apparent to accident investigators.
Conclusions

This report has evaluated the risk of injury from far side impact crashes in Australia and the United States. Our analysis was based upon an examination of injury outcomes of 107 occupants drawn from the Australian MIDS database, and over 4500 occupants extracted from the U.S. NASS/CDS 1993-2002 crash investigations database. All cases
were three-point belt restrained occupants of passenger cars, light trucks and vans who were exposed to a far side impact.

The goal of this study was to establish priorities for injury countermeasure development. Specific conclusions are as follows:

- Far side struck occupants have a significant risk of injury in both Australia and the United States. As a fraction of all occupants who experienced a side impact, far side struck occupants accounted for approximately 20% of the seriously injured persons and 25-29% of the Harm.

- Protection of the head, chest, and spine are priorities for countermeasure development in both Australia and the United States. These three body regions accounted for approximately half of all the Harm attributed to far side impact.

- Injuries to the upper and lower extremities combined for approximately 40% of the far side impact Harm in both countries – a surprisingly large fraction.

- Nearly half of all AIS 2+ injuries to the chest were the result of contact with the seat back. Analysis of high speed video of side impact crashes reveals that in a side impact the near side seat is frequently deformed out of position and into the trajectory of a far side occupant.

- The accident data suggest that improvement of safety belt loading should be a priority for both abdominal and chest injury reduction. Injuries induced by the safety belt or buckle accounted for approximately one-fourth of AIS 2+ chest injuries. Particularly surprising was the finding that 86% of the AIS 2+ abdominal injuries were the result of contact with either the safety belt or buckle. Future studies will investigate whether some of these abdominal injuries may be the result of undetected contact with the center console.

To assist in the development of a far side impact test procedure, the analysis used U.S. data to investigate the impact conditions which lead to far side impact injury. Specific findings are as follows:

- The median lateral delta-V for occupants exposed to far side impact was 12 km/hr. The median lateral delta-V for Harm was 22 km/hr while the median lateral delta-V for serious injuries was 28 km/hr.

- A principal direction of force of 60° was most likely to be associated with serious injury. A PDOF of 60° +/- 15° was experienced by 60% of the seriously injured persons and resulted in 45% of the Harm.

- A vehicle or fixed object striking the occupant compartment of a subject vehicle was most likely to produce far side injuries. Impacts involving the
occupant compartment accounted for 86% of the seriously injured persons and 86% of the Harm.

References

1. AAAM. Abbreviated Injury Scale – 1990 Revision, Association for the Advancement of Automotive Medicine, Des Plains, Illinois (1990)

