ARC Farside Meeting Update
Task 3: Carotid Artery

Kerry A. Danielson1,2, F. Scott Gayzik1,2, Mao Yu1,2,
Stefan M. Duma3, Joel D. Stitziel1,2

April, 2006, Detroit, MI
1. Virginia Tech – Wake Forest University Center for Injury Biomechanics
2. Wake Forest University School of Medicine

Carotid artery modeling goals

- Computational model of the carotid artery for the prediction of injury
- What’s been done:
 - Develop a robust material model and mesh of the artery (Gayzik et al. RMBS, 2005)
 - Organ level validation of the material model (Gayzik et al. AAAAM 2006, Gayzik et al. ASB 2006)
- Currently:
 - Regional level neck model

FE model development strategy

1. Tissue Level
2. Organ Level
3. Update: Regional Level

Review: Regional neck model

Materials:
- Neck tissues & musculature
 - "Mat_Viscoplastic"
- Carotid
 - "Mat_Simplified_rubber"
- Indenter
 - "Mat_Rigid"

Contact:
- Neck to carotid
 - Auto surf to surf
- Neck to neck
 - Tied

Boundary:
- Locked nodes on axial stress and medial sections body space

Update: Regional Model Integration with NHTSA Neck

- Integration of NHTSA model of the head and cervical spine
- Application of MCW crash pulse on integrated model

Update: NHTSA neck model

Materials:
- Vertebral Bodies, Head
 - "Mat_Rigid"
- Ligaments, Diaks
 - "Mat_Elastic"

Boundary Conditions:
- Prescribed motion applied to T1 vertebral body

Contact:
- Posterior ligament to posterior aspect of the head
 - nodes to surface
- Head Rotation about an anterior/posterior axis
 - constrained joint revolute

Validation:
- Axial Compression: Good agreement with experimental data
 - Pinlar et al. Stapp, 1989 (Myers et al. Stapp 1991)
- Frontal Impact: Not favorable agreement
 - Wismans, STAPP, 1984 (Wismans, STAPP, 1987)

Lateral Flexion: No validation performed?
Neck Model Anatomy

Regional model simulation matrix

Proposed Methods:
- Apply T1 acceleration boundary condition
- Validate with belt force data

Test matrix:

<table>
<thead>
<tr>
<th>PMHS Test No.</th>
<th>Carotid Injury</th>
<th>Belt Position</th>
<th>ΔV</th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>No</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>135</td>
<td>Yes</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>140</td>
<td>Yes</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>141</td>
<td>Yes</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

PMHS Belt Placement

Update: Combined neck model; MCW Load Curves

Materials:
- Vertebral Bodies, Head
- "Mat_Rigid"
- Ligaments, Disks
- "Mat_Elastic"
- Neck fascia & musculature
- "Mat_Elastic"
- Carotid
- "Mat_Simplified_rubber"

Boundary:
- Prescribed motion from PMHS tests applied to T1 vertebral body

Contact:
- Preserve NHTSA neck contacts
- Top nodes of regional model to constrained to head
- Constrained extra nodes set
- Neck to carotid
- Tied surf to surf
- Neck vertebral bodies to neck fascia
- Auto surf to surf

Combined Neck Model, Low Delta-V
NHTSA Neck, High Delta-V Pulse

- Concerns:
 - Vertebral body nodal penetration
 - No contacts defined here
 - Facet nodal penetration
 - No contacts between facets
 - Negative volumes
 - Intervertebral Disks

Attempt to resolve by applying both T1 and Head CG as acceleration B.C.

NHTSA Neck, Other modeling concerns

Application of Head CG and T1: Resolve through THUMs Modeling
Low belt does not interact with neck: Resolve by adding a shoulder form

Oblique View: High Delta-V, High Belt

Frontal View: High Delta-V, High Belt

Spine: High Delta-V, High Belt

NHTSA Neck with THUMS vertebral body displacements
Summary of Update:

- Current modeling issues and tasks:
 Regional neck model with embedded carotid artery
 - NHTSA neck in lateral flexion
 • Contacts, negative volumes, kinematics
 - Belt interaction with the neck fascia
 • Belt slips off of neck given a low belt

Current Focus

- Integrate THUMs results into full neck model
- Add shoulder interaction structure for the low belt case
- Assess strain in the carotid

Acknowledgments

- Collaborators:
 - Dr. Frank Pintar and Dr. Brian Stemper Medical College of Wisconsin
 - Far Side Group
 - Josh Tan, Wake Forest University Baptist Medical Center
- Funding:
 - Australian Research Council Linkage Grant
 - Department of Veterans Affairs Medical Research

The funding for this research has been provided in part by an Australian Research Council linkage grant and by private parties, who have selected Dr. Kenneth Diggles and FHWA\NHTSA National Crash Analysis Center at the George Washington University to be an independent auditor of and funder for research in motor vehicle safety, and to be one of the peer reviewers for the research projects and reports.

Supplemental Slides

Regional model geometry
Superior view
Lateral view

Relative C-spine Heights
NHTSA
117.8 mm
THUMS:
142.2 mm