AN NCAP RATING FOR FEMALES

ESV Paper 23-323

Kennerly Digges Automotive Safety Research Institute USA

Dainius Dalmotas

D. J Dalmotas Consulting, Inc. Canada

Priya Prasad Prasad Engineering, Inc. USA Female Representation in Well-defined 2 Vehicle Crashes by Vehicle Size/Classification

Considerations

- Females are more likely to be drivers of smaller vehicles
- Males are more likely to be drivers of larger vehicles
- Smaller vehicles undergo higher acceleration in small to large vehicle crashes
- Improved structural compatibility can reduce vehicle acceleration in lower severity crashes
- Reduced vehicle acceleration can reduce injuries to all occupants and body regions
- Design of Female NCAP should be structured to encourage greater vehicle compatibility

Approach to Developing Female NCAP

- Address priority body areas for further enhancement of protection.
- Help deployment of available countermeasures to further reduce female injury risks.
- Address relevant test procedures and risk measurement technologies while maximizing use of existing NCAP and available injury criteria
- Address other opportunities not addressed in todays testing.

Vehicle Aggressiveness Factors

- Three factors involved in aggressiveness
 - 1. Mass

2. Stiffness

3. Geometry

Vehicle Aggressiveness - Stiffness

Improved Stiffness Compatibility would reduce the severity of low deltaV crashes and be beneficial to all – especially Females

Stiffness Compatibility Concept

AIS 2-6 Chest injuries in Well-defined Frontal Crashes by Age and DeltaV

Female AIS 2+ Chest Injuries are most frequently older females at lower DeltaV (60%)

- 1. Reduce crash severity by controlling stiffness of front-end at lower but more frequent velocities
- 2. Improved Belt Technology to reduce injury risk at all delta V's

Chest Pressure Distribution – Conventional vs. Inflatable Belts

Conventional Belt and Inflatable Belt Computer Simulation of Chest Pressure

Conventional Belt Pressure

Inflatable Belt Pressure

Chest Injury Improved Technology – Inflatable Belts

Chest Improvements – Better Chest Injury Measurements and Older Female Criteria

Older Female Chest Injury Risk Curve

Chest Pressure Measurement

AIS 2+ Lower Extremity Injuries in Frontal Crashes by Age and Crash Severity

Females suffer 61% of the AIS 2+ Lower Extremity Injuries

■ 16 TO 49 YRS ■ 50 TO 99 YRS

Female Lower Limb AIS 2+ injuries are most frequently <u>older females</u> at lower DeltaV and <u>younger females</u> at higher DeltaV

- 1. Vehicle Stiffness Control reduces injury risk at lower deltaV's
- 2. Energy Absorbing Floor reduces injury risk at all deltaV

Distribution of Pelvic and Lower Extremity AIS 2+ Injuries to Females in CISS 2017-2020 Well-defined Frontal Crashes

CISS Documented Injuries to the Foot and Ankle During Braking and Brake Motion During a Crash Test

70% of Foot/Ankle Injuries During Braking are to the Right Foot

CISS Percent of Right and Left Foot/Ankle Injuries During Braking

FEMALE BRAKING	Foot/Ankle	Foot/Ankle	Percent
Lower			
Limb			
Region	AIS 2-6	Percent	On Brake
Foot Left	5	17%	
Ankle			
Left	4	13%	
Foot			
Right	14	47%	
Ankle			
Right	7	23%	70%
All	30	100%	

Brake Pedal Motion During NCAP Test

.0 Sec

.15 Sec

.06 Sec

.06 Sec

.15 Sec

Foot Acceleration Reduction with Floor Padding

Mercedes Crash Test Foot Acceleration With and Without Countermeasure

Female NCAP Recommendations

Overall: Promote Stiffness Compatibility; reduce crash acceleration in

lower severity crashes

Specific:

- 1. Lower Limbs:
 - Vehicle Stiffness Control; reduces injury risk at lower delta-V's
 - Energy Absorbing Floor; reduces injury risk at all delta-V's
 - Control Pedal Movement (Proposed under EURO NCAP)
- 2. Chest:
 - Improve Chest Response Monitoring/Measurement
 - Improved Load Distribution
 - Apply Injury Risk Curve for Older Female